疲倦的蠕虫可以告诉我们有关睡眠的信息?

新研究出版于BMC生物学uses秀丽隐杆线- a commonly used model organism and the simplest animal model known to sleep - to explore the effects of sleep deprivation. Here, author of the study, David Biron tells us how different organs are affected by sleep deprivation and the protective responses it triggers.


在动物王国中,睡眠可能是普遍的,但是这种普遍性的根本原因仍然存在争议。睡眠功能的假设包括以下概念:其效用在各种物种之间可能有所不同。

突触稳态假说提出,在清醒期间的连续学习使神经元连接饱和。因此,睡眠期间的缩小连接使大脑可以在第二天学习新信息。

其他建议的重点是“磨损”:不可避免地会产生神经元中的唤醒活性,蛋白质片段,展开的蛋白质或生化反应性副产品。在更大范围内,在哺乳动物睡眠期间,大脑的废物清除可能会增加。此外,睡眠破坏与异常的葡萄糖代谢,糖尿病和食欲调节有关。这些发现表明,睡眠是大脑以外的正常代谢和激素过程的关键。

蠕虫睡眠剥夺

为了阐明睡眠的基本功能,可以研究剥夺的影响。破坏人睡眠而导致的认知,生理和行为变化可能是微妙且难以检测的。同样,在部分睡眠剥夺后,动物模型通常不会表现出很大的脑损伤。为此做出贡献是在剥夺或此后不久触发的保护性反应,可以预防或修复损害。

Our study addressed the lasting impact of partial sleep deprivation in the roundworm秀丽隐杆线,,,,the simplest animal model known to sleep. The absence of motion served as a proxy for sleep – an admittedly imperfect measure of the interplay between duration and quality. For instance, worms may sleep ‘deeper’ than usual following a disruption. Barring more advanced characterizations, experimenters are blind to such complexities. However, even imperfect measurements can be instructive.

睡眠剥夺会触发一种保护性反应,该反应处理线粒体中错误折叠的蛋白质。阻止这种反应降低了疲倦的蠕虫的喂养率

检查潜在反应的第一步是建立一种破坏睡眠的方法,而没有明显的副作用。在睡眠损失的可能后果中,蠕虫特别适合在细胞水平上研究损伤。细胞损伤和修复可能以不同的速度发生,并且分子细节有所不同。因此,剥夺对不同器官,发育成熟度和充满活力的需求的影响可能会有所不同。因此,我们采用了一种比较方法来发现不同器官睡眠损失成本的共同点和差异。

The first example we encountered concerned mitochondria – cellular organelles that replenish energy stores and regulate metabolism. Mitochondria are particularly busy in energy hungry cells such as in the worm’s feeding organ, which can pump in liquid food 240 times a minute. Sleep deprivation triggers a protective response that handles misfolded proteins in the mitochondria. Blocking this response reduced feeding rates in tired worms.

Sleep deprivation in worms also triggers a protective response in the endoplasmic reticulum (ER) – an organelle tasked with folding and transporting proteins. Curiously, we found that blocking the ER response in tired worms did not affect feeding but was consequential for sperm cells and egg-laying muscles. Sub-par sperm cells kill themselves through a regulated process called apoptosis, and sleep deprivation causes more of them to do so. Similar phenomena in flies and mice suggest that deprivation induced sperm apoptosis is deeply conserved.

缺乏睡眠和糖尿病之间的联系,以及疲倦的老鼠肝,肺和心脏基因表达的广泛变化,认为疲劳的分子后果不仅限于大脑。我们的研究进一步表明,睡眠在不同的器官中有助于正常功能。“磨损”的积累及其在救济和修复方面的平衡可能会受到生理活动,发育成熟度或其他因素的影响。这种差异可以解释疲倦的蠕虫中保持正常喂养,卵子肌肉活性和精子数量的互补反应。

综上所述,我们的工作表明,睡眠剥夺使生物化学平衡的生物平衡使哺乳动物的共同祖先可以追溯到近十亿年。尚未系统地研究损害和修复的平衡如何在不同的代谢负荷的不同细胞中扩展,更不用说与睡眠了。线粒体响应对喂养的特定保护表明,在这种情况下,高度活跃的器官可能会引起不同的反应。进一步的比较研究可能会揭示这种睡眠不足的功能,并可能导致普遍原理的制定。

View the latest posts on the On Biology homepage

Comments